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J. Phys. A Math. Gen. 25 (1992) 1105-1t18. Printed i n  the UK 

Spiral site percolation on the square and triangular lattices 

S B Santra and i Bose 
Depanment of Physics, Bose Institute, 9311 Acharya Prafulla Chandra Road, Calcutta- 
700009, India 

Received I S  August 1991, in final farm 17 October 1991 

Abstnd. Percolation under rotational constraint is studied on the square and triangular 
lattices by three different methods: finite-size scaling study, Monte Carlo simulation and 
series expansion. The critical percolation probability pc and some cn'tical exponents are 
determined. Evidence is obtained for a scaling farm of the clusler distribution function. 
Far the square lattice, the average cluster size exponent y is found to be equal lo that of 
directed percolation. 

1. Introduction 

Percolation under rotational constraint, referred to as spiral percolation, has recently 
been studied (Santra and Bose 1991, paper I) on the square lattice using finite-size 
scaling analysis. In spiral percolation, each path proceeds either straight or in a specific 

constraint spans the underlying lattice. For this model, the critical percolation probabil- 
ity pc  for site percolation on the square lattice and some of the critical exponents have 
been determined in paper I. Evidence has been obtained for a scaling form of the 
cluster size distribution function. Spiral percolation has been found to belong to a new 
universality class different from those corresponding to undirected and directed percola- 
tion: In section 2 of this paper, we present the results of a finite-size scaling study of 
spiral site percolation on the triangular lattice for lattice size up to 130X 130. Some of 
the results for the square lattice, given in paper I, are re-examined. Section 3 gives 
results of Monte Carlo simulation ofspiral site percolation on the square (size 140 x 140) 
and triangular (size 130x 130) lattices. Section 4 contains results for the average cluster 
size exponent y for percolation on the square lattice, obtained by the method of series 
expansion, Section 5 gives a discussion of the results obtained. 

rda!inna! dircctio!!, say c!nckwise. Perro!.!io!! OCCEIS if. C!ES!P? obeying the ro!a!io"l! 

2. Finite-size scaling study 

This section contains the formulae and procedural details for calculation of some 
critical exponents to be defined below. We consider spiral site percolation on a 
triangular lattice of size L x L. For the triangular lattice, the specitic rotational direction 
in which turning is allowed is chosen to be the clockwise direction which has the least 
deviation from the original direction of motion. The spiral percolation threshold p , ( L )  
is determined by the binary search method (paper I). The average value ( p , ( L ) )  of N 
estimates ( N  x L x  L is of the order of 106-10') is taken as  the percolation threshold. 
In the case of undirected percolation, the most widely used method of calculating 
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critical exponents is to fill up a large lattice by clusters of various sizes s with site 
occupation probability p.  The cluster size distribution is given by n,(p) ,  the number 
of clusters of size s per site of the lattice. The various moments of n , ( p )  given by 

S B Santra and I Bose 

F s k n s ( p )  k=O, I ,  2, . . . ( 1 )  

(the prime denotes that the largest cluster is excluded from the sum) become singular 
as p + p c  with characteristic critical exponents. For example, the average cluster size 
corresponds to k = 2 and diverges as p + p, with an exponent y. Thus, a knowledge of 
n,( p) and its various moments is necessary for the calculation of critical exponents. 
Another method for the calculation of critical exponents is the single cluster growth 
method (Leath 1976, Alexandrowitz 1980) in which clusters are grown singly starting 
from a fixed origin. The cluster size distribution is now given by 

P ~ ( P ) =  N Z I N t o t  ( 2 )  

where N, is the number of clusters of size s in a total number N,,, of clusters generated. 
The various moments of P s ( p ) , x :  s k P s ( p )  become singular as p + p c .  The average 
cluster size ,y is given by 

x - C’ ( P )  (3) 

and diverges as p + p .  with the critical exponent y. In the single cluster growth method 
the cluster configurations are rooted at the origin and the first, not the second, moment 
of the cluster size distribution defines the exponent y. In fact, any exponent which 
corresponds to  the kth moment of the cluster size distribution in the case of the 
lattice-filling method is obtained from the (k-  1)th moment, one order less, in the case 
of the single cluster growth method. In the cases of directed and spiral percolation 
where there is a directionality constraint on the percolation process, one realizes that 
the cluster size distribution n , ( p )  of the lattice-filling method has no meaning. Percola- 
tion clusters obeying a directionality constraint can be defined only with respect to a 
fixed origin. Thus, the single cluster growth method provides the only known simulation 
procedure for calculation of critical exponents. As in paper 1, we combine the single 
cluster growth method and finite-size scaling analysis in order to  calculate various 
critical quantities. For a particular lattice size L x L we choose p to he equal to (p , (  L) ) .  
The values of ( p , ( L ) )  for different values of L are listed in table 1. Ten thousand 
clusters are grown for this value of p .  As in paper I, clusters are counted in bins. The 
size of the largest cluster which spans the lattice, S,, is determined. The average cluster 
size ,y given by (3) and also the second moment of the cluster size distribution ,y’ 

a finite system, quantities like the average cluster size depend not only on p but also 
on the linear dimension L of the lattice. True critical behaviour occurs only in the 
limit of infinitely large lattices hut an estimate of the critical exponents, e.g. y, can be 
obtained from the studies of finite systems by assuming the finite-size scaling hypothesis 
(Stauffer 19851, which leads to the formula 

( x ’ - I p - p p )  zre r&&?!ed. The proC&ure is repe&?d fQr v.riQ.$ v&.s of L. 

A = L-””F[( p - pJL””1 (4) 

where A is a quantity which becomes critical, A - Ip - p J X  as p + p c ,  The function F 
is a suitable scaling function. At p = p.. the quantity A varies as L-“”. This result can 
be used to determine the exponents y / u ,  y ’ / u  by calculating the first and second 
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Table I. The values of percolation threshold ( p , ( L ) )  for different values of L for spiral 
site percolation on the square and triangular lattices. 

L Square lattice Triangular lattice 

I" 
2" 

40 
50 
60 
70 
80 
90 

100 
I10 
I20 
130 
140 

n mn, 
"."II, 

0.7020 
0.7039 
0.7053 
0.7067 
0.7074 
0.7083 
0.7083 
0.7093 
0.7093 
0.7101 
0.7107 

n <I90 
"."Y,O 

0.6675 
0.6675 
0.6675 
0.6665 
0.6665 
0.6666 
0.6666 
0.6666 
0.6667 
0.6667 

moments, x and x' respectively, of the cluster size distribution. The largest cluster 
spanning the lattice is of size S, and is a fractal with fractal dimension D defined by 

s, - LD. ( 5 )  
The fractal dimension R can again be written as 

D = d - P / v  (6) 
where p is the exponent corresponding to the probability P that a site belongs to the 
infinite (spanning) cluster, P-(p-p,)'. From ( 5 )  the fractal dimension D can be 
determined and from (6 ) ,  putting d =2,  the value of p / v  can be calculated. 

Figure 1 shows a plot of the logarithm of the largest spanning cluster size S, at 
the percolation threshold p.= (p,(L.)) versus log L. The slope of the straight line gives 

I 

2.51 * 
1.5 11 1 9 2 1 

log L 

Figure 1.  For the triangular lattice, a plot of log S, against log L at p = ( p , ( L ) )  where S, 
is the largest spanning cluster size. The slope ofthe straight line gives the fractal dimension 
D of the spanning duster D = 1.956*0.008. 
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fractal dimension D = 1.965 * 0.008 and so from (6) p /  v = 0.035 *0.008. In figure 2 
the logarithm of the average cluster size ,y (equation (3)) is plotted aginst log L at the 
percolation threshold. The slope of the straight line obtained gives y/u = 1.867*0.028. 
Figure 3 shows a plot of the logarithm of x‘,  the second moment of the cluster-size 
distribution, versus log L. The slope of the straight line obtained gives the exponent 
y’/u=3.829*0.062. The errors quoted for D, y l v  and y’lv are the standard least 
square fit errors taking into account the statisticai error o i  each singie data point. in 
paper I, spiral site percolation on the square lattice was considered. In that paper, the 
exponent y/v  was wrongly calculated from the second moment, rather than the first 
moment of the cluster size distribution. We have rectified the error by recalculating 
the exponent y/ Y from the first moment of PT( p). The correct values of the exponents 
y/ Y and y’/ U are y/ v = 2.01 f 0.06, y’/ U = 4.05 f 0.13. The exponent p /  U as computed 
in paper I is p /  U = 0.043 * 0.009. In paper I, the correlation length exponent U was 
determined by using the finite-size scaling formula (Levinshtein et al 1976, Reynolds 
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1. 

x 

- T 

6. 

2.01 
1.6 1.8 2.0 2.2 

log L 

Figure 2. For the triangular lattice, a plot of logx against log L at p = ( p , ( L ) )  (equation 
(3)). The slope gives V I ” =  1.867h0.028. 



Spiral site percolation 1109 

et a1 1980) 

A(L) = [ ( p f ( L ) )  - ( P ~ ( L ) ) ~ ] ” ~  - L-’I” (7) 
where A(L) gives the spread in the estimates of the percolation threshold p , ( L )  as 
determined by the binary search method. The lattice size was varied from L=50 to 
L= 140 in steps of 10. The plot -log A(L) versus log L was found to he a straight line 
with the slope 1/ U = 0.396 and U = 2.53. This value of U was used to obtain the values 
of the exponents y and p from the directly measured values of y/ U, p/  U. In this paper 
we have extended the data for A(L) to smaller lattice sizes up to L=30. With the 
extended data, one finds a distinct curvature in the plot of log A(L) versus log L. Thus, 
A(L) is no longer given by (7). It has not been possible to find the appropriate curve 
which fits the data reasonably well. For the triangular lattice also, the data points of 
the plot log A(L) versus log L cannot be fitted by any known curve and so no 
approximate estimate of U from finite-size scaling analysis can be made. 

3. Monte Carlo simulation 

In this case, simulation is carried out for one particular lattice size. For the square 
lattice, the lattice on which clusters have been generated, is of size 140 x 140; for the 
triangular lattice, the size is 130 x 130. The value of the percolation threshold pc  is 
determined by the binary search method. Ten thousand clusters are generated by the 
single cluster growth method. The growth of  a cluster is stopped when there is no 
further site available for occupation or when the size of the clusters exceeds a maximum 
size Smax. For the square and triangular lattices, S,,, has the values 4095 and 2047, 
respectively. The quantities x, the average cluster size, XI. the second moment of the 
cluster-size distribution, as well as the correlation length 5 are determined as a function 
of Ip -pel. As the site occupation probability p tends towards the percolation threshold, 
x, x’ and 5 diverge as 

x - IP -Pel-' ( 8 0 )  

x’ - IP -Pel-" (86) 

5 - IP -Pel-". ( 8 ~ )  
The correlation length 5 is determined from the relation (Stauffer 1985) 

where P , ( p )  is the cluster size distribution defined in (2), R: is the square of the radius 
of gyration of a cluster of size S given by 

ro is the position of the centre of mass of the cluster and r, the position of the ith site 
of the cluster. We first quote the results for the square lattice. The value of p c  is 
p,=O.711 +O.OOl. Figure 4 shows a plot of logx versus loglp-p, l .  The slope of the 
straight line obtained gives the value of the average cluster size exponent y as 
y=2.19+0.07. The error on the average cluster size x is determined from the cluster 
statistics, by calculating the variance (+ of S i n  a sample of 10000 clusters, the error 



1110 S B Santra and I Bose 

L 
-1 4 -1 2 -1 0 

log1 P - P.1 

Figure 4. For the square lattice, a plot of logx against loglp-p,l. The slope gives y =  
2.19+0.07 (equation (80)). 

~-.. _.... ̂ r  ~ L.>~.. -,*rill r__ &L:. .LA -,..-.--. "^_^_^.^_I --- _.__ .̂̂ _I :.. esnmaic UI x oang U/ iuu. rut inis purpuss, LUG U U ~ L E I S  g=:rrcrarsu aic cuuiiicu 111 

separate bins, the ith bin containing clusters of sizes in the range y-t-(2' - 1) .  The 
asymptotic formula (8a) seems to work well for the range of values of 1 p - pc1 between 
0.04 and 0.10, and ,y between SO and 440. For values of Ip -pel less than 0.04, deviation 
from straight line behaviour occurs as the number of clusters of size S > Smsx (which 
have not been counted) begins to be appreciable. Figure 5 shows a plot of log x' versus 
loglp-p,l  (equation (86)) from which the exponent y' is obtained as y'=4.51*0.16. 
Figure 6 is a plot of log 5 versus loglp -pel (equation (Sc)) from which the exponent 
Y is obtained as U = 1.16*0.01. From the scaling relation U = ( y ' -  y ) / 2 ,  the value of 
Y turns out to be v=1.16*0.23, which agrees well with the value obtained through 
direct measurement. We now give the results for the triangular lattice. The value of pc  
is p,=0.667*0.001. Figure 7 shows the plot of logx versus loglp-p, l ,  from which the 

I 
- l . L  -1.2 -1.0 

IOglP-PJ 

~ i g u r e  S.   or the square lattice, a plot of logx' against loglp-p,l. The slope gives 
y'=4.5110.16 (equation ( 8 b ) ) .  
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I .. -i.i - i . i  - 1 . "  

lagJP-Pcl  

Figure 6. For the square lattice, a plot of log( against log lp-p , l .  The slope gives U =  

1.1610.01 (equation (Sc)). 

I 
-1.4 -1.2 -1.0 

loglP-Pcl 

Figure 7. For the triangular lattice, a plot of logy against loglp-p.l .  The slope gives 
y =  2.0791-0.062. 

exponent y =2.079*0.062. Figure 8 is the plot of logx' versus loglp-p, l ,  from which 
the exponent y'=4.376*0.199. Figure 9 shows the plot of log 6 versus loglp-p,l, from 
which the value of U is obtained as ~=1.012*0.025.  The value of U obtained from 
the scaling relation u = ( y ' - y ) / 2  is U =  1.15iO.26. 

4. Series expansion method 

The details of this method are given in standard reviews on percolation theory (Stauffer 
1979, Essam 1980). We discuss the method only in relation to our problem. Briefly, 
the probability p that the origin from which clusters grow is occupied can be written 
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-1 4 -1 .2 -1 .o 
lOglP-PJ 

Figure 8. For the triangular lattice, a plot of log,$ against laglp-p,/. The slope gives 
y ’=  4.3765~0.199. 

-1 3 -1 2 - 1  1 -1 0 
loQlP-PA . ~, 

Figure 9. For the triangular lattice, a plot of l o g 5  against loglp-p,l. The slope gives 
Y =  1.012+0.025. 

as a sum over all finite clusters that start from it (for p <p,), i.e. 

P = 2 g,,p’(l -PI‘ = X  p’D.(q) q = l - p  (11) 
9.1 

where g,, is the number of clusters or  ‘lattice animals’ of s sites and t perimeter sites 
and D,(q)s are the perimeter polynomials. The animals are rooted at the origin. The 
average cluster size x is the first moment of the cluster size distribution (ConceiGBo et 
al 1986) 

x = 1 % , P ‘ ( l  -PI ’  - IP - P c I P  as P + pc. (12) 
7.t 

The clusters rooted at the origin obey the same rotational constraint as in the percolation 
process. Recently, lattice animals obeying the rotational constraint, designated as spiral 
lattice animals, have been studied extensively (Bose and Ray 1987, Bose er a/ 1988a, b, 
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Santra and Bose 1989). The major focus in these studies has been on spiral lattice site 
animals with no fixed origin. If the origin is not kept fixed, the number of perimeter 
sites is dependent on the position of the origin. In rotationally constrained percolation, 
the percolation clusters are rooted at the origin, so the spiral lattice site animals in the 
series expansion method have to be rooted, i.e. with a fixed origin, and each distinct 
animal configuration has a unique value for the number of perimeter sites. The rooted 
spiral lattice site animals of s sites and t perimeter sites have been enumerated exactly 
up to size s = 13 for clusters embedded in the square lattice. Thus, the series expansion 
for the average cluster size x (equation (12)) is exactly known, when expanded in 
powers of p, up to the term containing the power p". A standard method (Sykes and 
Glen 1976) enables one to extend the series by one more power. Table 2 gives the 
coefficients for the expansion of x = 1 + 2, b,p' on taking out a common factor of p. 
In the appendix we also list the perimeter polynomials for the spiral lattice site animals 

described in detail by Gaunt and Guttmann (1974). We form Pad& approximants to 
the series for d/dp(lnx). In some cases the singularity closest to the origin lies on the 
negative real axis which is responsible for slow convergence of the approximants. 
Table 3 lists some sequences of D log Pad6 estimates of poles and residues. In figure 
10, the residues are plotted against the positions of their corresponding poles. The 

^I *Le "^..^_~ I".,:". AI-&-- .La""-:-" F..- .. ... " L...... ,%I, 1 .l.̂ ^_^^ -A..-- 
"LI ,,,= J'1U"Z I(I,LICC. r X L L T I  U",'a,,,,,,6 L l l c i  J S L I G D  ,", x ,  W T  LLLIVC ,u,,uwciu LL'C y1"ccuuLc 

Table 2. Coefficients of the series of average cluster size x = 1 + H ,  b,p' for site percolation 
on the square lattice. 

b. . 
1 4 
2 8 
3 12 
4 20 
5 32 
6 56 
7 84 
8 144 
9 212 

10 368 
I I  556 
12 922 
13 1328 

Tsbb 3. D lag Pad6 estimates of pales (P)  and residues ( R )  corresponding to average 
cluster Size on the square lattice. 

N-2," N-I /N  NI N N+IIN N + 2 J N  

N P  R P R P R P R P R 
~ ~ 

3 0.6694 1.5984 0.6764 1.6943 
4 0.6771 1.7049 0.6707 1.6133 
5 0.6316 1.1353 0.6486 1.3073 0.5908 0.6306 0.6395 1.2259 0.7075 2.1276 
6 0.6395 1.1202 0.6295 1.0835 0.5532 0.3421 
7 0.6384 1.1907 
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I 
0.55 0.65 0.15 

Pale iP1 

Figure IO. Pole residue plot corresponding lo average cluster size for site percolation on 
the square lattice. The residue corresponding to the pale at p,=0.711~0.001 gives y =  
2.161 *0.004. 

data points define quite accurately a single smooth curve. The residue corresponding 
to the pole at pc  gives the exponent y corresponding to the average cluster size x. Since 
the value of pc for spiral site percolation on the square lattice is not exactly known, 
we use the value p,=O.711 ztO.001 obtained from Monte Carlo simulation of spiral 
site percolation on the square lattice (section 3). The corresponding residue gives the 
exponent y as y=2.167*0.004.  For lack of a sufficiently long series, the series 
expansion method has not been applied to the triangular lattice. 

5. Discussion 

In sections 2, 3 and 4 we have used three different methods, finite-size scaling study, 
Monte Carlo simulation on a large lattice and series expansion, to calculate some 
critical exponents for spiral site percolation on the square and triangular lattices. Table 
4 lists the values of the critical exponents obtained through different methods. For the 
sake of comparison of the finite-size scaling study and Monte Carlo simulation results, 
the values of y / v  and y ' l v  in the case of Monte Carlo simulation have been computed 
from the directly measured values of y, y' and Y.  For the triangular lattice, in computing 
y / v  and y ' / v  the value of Y as obtained from scaling relation U =  ( y ' - y ) / 2  has been 
used as it is closer to the estimate of Y for the square lattice. An examination of table 
4 shows that universality of critical exponents holds within error bars. 

The cluster size distribution function P , ( p )  has the scaling form in the critical 
region given by 

PJP) = s-'+'f[(p -Pc)S"l (13) 
where the exponents 7 and U are related to the exponents y and p through the relations 

y =  ( 3 - 7 ) / 0  and p =  ( 7 - 2yu. ( 1 4 )  

A verification of the scaling function form in (13) is possible by plotting P , ( p ) / P , ( p , )  
against (p-pJsS If the scaling form is true then, for sufficiently large clusters and 



Spiral site percolation 1115 

Table+ Numerical values of critical exponents for spiral site percolation an the square and triangular lattices. 

Series 
Finite-sire scaling Monte Carlo Simulation exoansion - 

Lattice 

Square 
2.01 4.05 0.043 2.19 4.5 1 

e0.06 +0.13 *0.009 10.07 10.16 

*0.08 h0.17 
Y / Y =  1.89 y ' / u = 3 . 8 9  

( v = l . l 6 )  

Triangular 
1.867 3.829 0.035 2.079 4.376 

+0.028 e0.062 10,008 *0.062 e0.199 
y l v = 1 . 8 0 8  y ' / v = 3 . 8 0 5  

( " = L I S )  

1.16 2.167 
*O.Ol k0.004 

y = ( Y ' - Y ) / 2  
= 1.16+0.23 

1.012 
*0.025 
U = ( Y ' -  Y ) / 2  
= 1.15+0.26 

for different values of p, the data should collapse onto a single curve. From (14), the 
exponents U and 7 can be expressed in terms of the exponents 1 / v ,  y l u  and P I U  as 

On using the values of 1/ U, y / u  (Monte Carlo simulation) and p / u  (finite-size scaling) 
the values of U and 7 for the square lattice are U = 0.446 i 0.024. and T = 2.022 0.006. 
The test of scaling form has been done for a lattice size of 140 x 140 with pc equal to 
( p J L ) ) .  P , ( p )  and P,(p,)  have been calculated using ( 2 )  where N, is the number of 
clusters in a particular bin, the size s being the geometric mean of the bounding cluster 
sizes of the bin. Figure 11 shows a plot of P , ( p ) / P , ( p , )  against the scaling variable 

I . 
'*. , 

R 
0 

-1.5 -05 0.5 
Ip-p,IS' 

Flgure 11. For the square lattice, a plot of P , ( p ) l  P,( p,)  against ( p  -p,)s" for nine different 
values of p with 0=0.446. Ip-p.I changes from 0.01 to 0.08 in steps of 0.01 with 
32<S<2047. T h e  circled plus sign is the position of the point (0, 1) .  The data plotted 
correspond to: p - p. (inverted solid triangle), -0.01 (inverted open triangle), -0.02 (solid 
circle), -0.03 (cross), -0.04 (plus sign), -0.05 (solid diamond), -0.06 (open triangle), 
-0.07 (open square), -0.08 (open circle). 
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( p - p , ) s "  for nine different values of p .  The data for different values of p have been 
marked by different symbols, I p - p J  being in the range 0.01-0.08. The cluster size s 
is within the limits 32<s<2047. The circled plus denotes the location of the point 
(0,l). In paper I, a test of the scaling form was done for U = 0.19. This value of U was 
obtained from (15) with the overestimated value of U = 2.53. The data collapse was 
not sharp and Ip-pcI was in the range 0.01-0.055. On extending this range, we find 

occurs for the whole range of Ip-pc l ,  0.01-0.08, for which data can be obtained. For 
Ip-pcI> 0.08 the ratio P , ( p ) / P , ( p , )  becomes small. Figure 12 shows data collapse for 
the triangular lattice for which u=0.473. The range for lp - p J  is 0.02-0.12 and the 
cluster size s is within the limits 64<s<511. 

that data co!!apse does not occur: With our new estimate of Lr = 0.446, da!. re!!apse 

' 0 ,  
I 

01 
-1.5 - 0.5 0.5 

ip-P, lS 

Figure 12. For the triangular lattice, a plot of P , ( p ) / P , ( p . )  against ( p - p J s "  for 10 
different values of p with r=0.473. / p - p c l  Calls in the range 0.02-0.12 with 64<S<511. 
The circled plus sign is the position of the point (0,l). The data plotted correspond to 
lp-pcI =0.02 (inverted open triangle), 0.04 (cross), 0.05 (open square), 0.06 (plus sign), 
0.07 (open circle), 0.08 (solid diamond), 0.10 (open triangle), 0.11 (solid triangle), 0.12 
(solid circle). 

The values of the critical exponents obtained for spiral site percolation in two 
dimensions are different from the values of critical exponents in the case of undirected 
percolation. Spiral percolation is similar in nature to directed percolation, since for 
both the modeis a directionai constraint is operative. in the first case the directionai 
constraint is rotational in nature and in the second case percolation occurs only in 
certain specific directions. Dhar and Barma (1981) have studied directed percolation 
on the square lattice using Monte Carlo simulation. In table 5 we compare the values 
of the exponents obtained by them with the values of exponents obtained by us for 
spiral site percolation on the square lattice. We find that the average cluster size 
exponent y is the same For both the cases. Tinis is an interesting resuii which shows 
that the average cluster size diverges with the same exponent irrespective of the nature 
ofthe external constraint. One crucial difference between spiral and directed percolation 
is that in the first case percolation clusters grow isotropically whereas in thz second 
case the clusters grown are anisotropic in nature. For the first case, there is thus only 
one correlation length which diverges with the exponent Y as p a p c  whereas, in the 
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Table 5. Comparison of the values of the critical exponents y, p ,  ~j and (r in the cases of 
directed and spiral percolation on the square lattice. 

Directedt 2.19 * 0.03 0.240+ 0.006 2.1 12 + 0.005 0.406 + 0.005 
Spiral 2.19 + 0.07 0.050+0.0051: 2.022+0.006 0.446*0.024 

t Monte Carlo simulation results (Dhar and Bama 1981). 
$The value has been obtained by multiplying the value of p / v  for the square lattice (see 
table 3) by Y =  1.16. 

second case, there are two correlation lengths, one parallel and the other perpendicular 
to the preferred direction, which diverge with the exponents uIl and vL respectively as 
P+PC. 

In our study of spiral site percolation on  the square lattice, we have not been able 
to consider large lattice sizes. The major reason for this, in our case, is the non- 
availability of adequate computer time and memory. In this context we mention one 
significant limitation of the computer algorithm for the generation of rotationally 
constrained clusters. For simulation in the cases of both undirected and directed 
percolation, it is not necessary to store the whole lattice with all its Ld sites, where d 
is the dimension of the lattice. In two dimensions, knowledge of only one row (or 
column) is required at a time. For example, for a IOOOx 1000 lattice, only one array 
of site 1001 is necessary for storing the occupation status. This makes simulation of 
large systems possible. For spiral percolation (details of the algorithm given in paper 
I), however, the occupation status of the whole lattice has to be kept stored and so 
simulation of large systems becomes much more difficult. On the other hand, enumer- 
ation of spiral lattice site animals is time consuming because of the rotational constraint, 
thus limiting the scope of series expansion studies. Accurate estimates of the critical 
exponents are available in the cases of undirected and directed percolation. To achieve 
comparable accuracy, greater computational efforts are required in the case of spiral 
percolation. 
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Appendix 

Perimeter polynomials for the rooted spiral lattice site animals on the square lattice: 

D, = 94 

D, = 49’ 

D3 = 4q5+ 10q6 
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D4=24q6+20q7 

D,= 14q6+84q7+35qn 

D6= 4q6+ 100q7+232qn+ 56q9 

D,=4q6+56q7+448qn+552q9+84q'o 

D,=48q7+404q8+1548q9+1200q1"+120q1' 

D, = 24q'+ 361 q8+ 2020q9+4600q10+ 2444q" + 169q" 

D,,  = 4q7 + 268q8 + 2132q9+ 8144q1'+ 12 292q" +4776q"+ 244qI3 + 4qI4 

D , ,  = 122q8+2016q9+ 10 348q1'+28 332q"+30476q'2+9080q'3 

S B Santra and I Bose 

+418q'4+24q15+4q'6 

U,,= 36q8+1336q'+ 11 724q"+43 572q"+88 456qii+71 456q" 

+ 17 1 52qI4 + 924q" + 14Oql6 + 24q"+ 4q" 

D,3=7qn+692q9+10222q'o+57 384q"+163 802q1*+254 176q1'+161 084qI4 

+ 32 876qI5+ 2671 qI6+ 616qI7 + 1 4 8 p  +24ql9+4q2O. 
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